in the J.J. Sakurai’s book, the formalism of finding the matrix representation of rotation operator is general, but quite long and detail. A general treatment is necessary for understanding the topic, but i think, who will use arbitrary rotation? so,  here i give a simple and direct calculation on $J_x$ and $J_y$, for use-ready.

the method is diagonalization. because we already knew the matrix form of the angular momentum operator. which is not given in J.J.Sakurai’s book.

recall that the formalism:

$f(M) = P \cdot f(D) \cdot P^{-1}$

since $D$ is diagonal matrix, thus

$f(D)_{ij} = f(\lambda_i) \delta_{ij}$

so, we have to find out the $P$ for $J_x$ and $J_y$.

i am still trying to obtain the equation, but…..

anyway, using program can solve it without headache. ( but typing Latex is )here are some result.

$J_x(\frac{1}{2}) = \begin {pmatrix} cos \left( \frac {\theta}{2} \right) & - i sin \left( \frac{\theta}{2} \right) \\ -i sin ( \frac{\theta}{2} ) & cos (\frac {\theta}{2}) \end {pmatrix}$

$J_y(\frac{1}{2}) = \begin {pmatrix} cos \left( \frac {\theta}{2} \right) & - sin ( \frac{\theta}{2} ) \\ sin ( \frac{\theta}{2} ) & cos (\frac {\theta}{2}) \end {pmatrix}$