Product of Spherical Harmonics

Leave a comment

One mistake I made is that

\displaystyle Y_{LM} = \sum_{m_1 m_2} C_{j_1m_1j_2 m_2}^{LM} Y_{j_1m_1} Y_{j_2m_2}

because

\displaystyle |j_1j_2JM\rangle = \sum_{m_1m_2} C_{j_1m_1j_2 m_2}^{LM} |j_1m_1\rangle |j_2m_2\rangle

but this application is wrong.

The main reason is that, the |j_1j_2JM\rangle is “living” in a tensor product space, while |jm \rangle is living in ordinary space.

We can also see that, the norm of left side is 1, but the norm of the right side is not.


Using the Clebsch-Gordon series, we can deduce the product of spherical harmonics.

First, we need to know the relationship between the Wigner D-matrix and spherical harmonics. Using the equation

\displaystyle Y_{lm}(R(\hat{r})) = \sum_{m'} Y_{lm'}(\hat{r}) D_{m'm}^{l}(R)

We can set \hat{r} = \hat{z} and R(\hat{x}) = \hat{r}

Y_{lm}(\hat{z}) = Y_{lm}(0, 0) = \sqrt{\frac{2l+1}{4\pi}} \delta_{m0}

Thus,

\displaystyle Y_{lm}(\hat{r}) = \sqrt{\frac{2l+1}{4\pi}} D_{0m}^{l}(R)

\Rightarrow D_{0m}^{l} = \sqrt{\frac{4\pi}{2l+1}} Y_{lm}(\hat{r})

Now, recall the Clebsch-Gordon series,

\displaystyle D_{m_1N_1}^{j_1} D_{m_2 N_2}^{j_2} = \sum_{jm} \sum_{M} C_{j_1m_1j_2m_2}^{jM} C_{j_1N_1j_2N_2}^{jm} D_{Mm}^{j}

set m_1 = m_2 = M= 0

\displaystyle D_{0N_1}^{j_1} D_{0 N_2}^{j_2} = \sum_{jm} C_{j_10j_20}^{j0} C_{j_1N_1j_2N_2}^{jm} D_{0m}^{j}

rename some labels

\displaystyle Y_{l_1m_1} Y_{l_2m_2} = \sum_{lm} \sqrt{\frac{(2l_1+1)(2l_2+1)}{4\pi(2l+1)}} C_{l_10l_20}^{l0} C_{l_1m_1l_2m_2}^{lm} Y_{lm}


We can multiply both side by C_{l_1m_1l_2m_2}^{LM} and sum over m_1, m_2,  using

\displaystyle \sum_{m_1m_2} C_{l_1m_1l_2m_2}^{lm}C_{l_1m_1l_2m_2}^{LM} = \delta_{mM} \delta_{lL}

\displaystyle \sum_{m_1m_2} C_{l_1m_1l_2m_2}^{LM} Y_{l_1m_1} Y_{l_2m_2} = \sqrt{\frac{(2l_1+1)(2l_2+1)}{4\pi(2L+1)}} C_{l_10l_20}^{l0} Y_{LM}

 

 

Clebsch-Gordon Series

Leave a comment

One of the important identity for angular momentum theory is the Clebsch-Gordon series, that involved Wigner D-matrix.

The series is deduced from evaluate the follow quantity in two ways

\langle j_1 m_1 j_2 m_2 | U(R) |j m \rangle

If acting the rotation operator to the |jm\rangle , we insert

\displaystyle \sum_{M} |jM\rangle \langle | jM| = 1

\displaystyle \sum_{M} \langle j_1 m_1 j_2 m_2|jM\rangle \langle jM| U(R) |jm\rangle = \sum_{M} C_{j_1m_1j_2m_2}^{jM} D_{Mm}^{j}

If acting the rotation operator to the \langle j_1 m_1 j_2 m_2| , we insert

\displaystyle \sum_{N_1 N_2 } |j_1 N_1 j_2 N_2\rangle \langle  j_1 N_1 j_2 N_2| = 1

\displaystyle \sum_{N_1 N_2} \langle j_1 m_1 j_2 m_2|U(R) | j_1 N_1 j_2 N_2\rangle \langle j_1 N_1 j_2 N_2| jm\rangle

\displaystyle = \sum_{N_1N_2} C_{j_1N_1j_2N_2}^{jm} D_{m_1N_1}^{j_1} D_{m_2 N_2}^{j_2}

Thus,

\displaystyle \sum_{N_1N_2} C_{j_1N_1j_2N_2}^{jm} D_{m_1N_1}^{j_1} D_{m_2 N_2}^{j_2} = \sum_{M} C_{j_1m_1j_2m_2}^{jM} D_{Mm}^{j}

We can multiply both side by C_{j_1 N_1 j_2 N_2}^{jm} , then sum the j, m

using

\displaystyle \sum_{jm} C_{j_1 N_1 j_2 N_2}^{jm} C_{j_1N_1j_2N_2}^{jm} = 1

\displaystyle D_{m_1N_1}^{j_1} D_{m_2 N_2}^{j_2} = \sum_{jm} \sum_{M} C_{j_1m_1j_2m_2}^{jM} C_{j_1N_1j_2N_2}^{jm} D_{Mm}^{j}