Complete derivation from Schrodinger equation to Laguerre equation for Coulomb potential

Leave a comment

The Hamiltonian is

\displaystyle H = -\frac{\hbar^2}{2m}\nabla^2 - \frac{Ze^2}{4\pi\epsilon_0r}

Separate the radial and angular part. The radial equation is

\displaystyle  \left( -\frac{\hbar^2}{2m}\frac{1}{r^2}\left(\frac{d}{dr} r^2 \frac{d}{dr} \right) - \frac{Ze^2}{4\pi\epsilon_0 r} + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2} \right) R(r) = E R(r)

rearrange, using Atomic unit

\displaystyle  \left( -\frac{1}{2}\frac{1}{r^2}\left(\frac{d}{dr} r^2 \frac{d}{dr} \right) - E -\frac{Z}{ r} + \frac{1}{2} \frac{l(l+1)}{r^2} \right) R(r) = 0

Since the normalization condition of R(r) is \int_0^\infty R(r)R(r) r^2 dr = 1, it is natural to define u(r) = r R(r)

\displaystyle R = \frac{u}{r}, \frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = r \frac{d^2u}{dr^2}

The radial equation becomes

\displaystyle -\frac{1}{2}\frac{d^2u}{dr^2} - \left( E + \frac{Z}{ r} - \frac{l(l+1)}{2r^2} \right) u(r)= 0

Substitute the eigen energy E_n = - \frac{Z^2}{2n^2}

\displaystyle \frac{d^2u}{dr^2} + \left( - \frac{Z^2}{n^2} + \frac{2Z}{ r} - \frac{l(l+1)}{r^2} \right) u(r)= 0

Set

\displaystyle x = \frac{2Z}{n} r,   \frac{d}{dr} = \frac{d}{dx} \frac{2Z}{n}

The radial equation becomes

\displaystyle \left(\frac{2Z}{n}\right)^2\frac{d^2u(x)}{dx^2} - \left( - \frac{Z^2}{n^2} + \frac{4Z^2}{n x} - \frac{4Z^2}{n^2}\frac{l(l+1)}{x^2} \right) u(x)= 0

Take out the 4Z^2/n^2

\displaystyle \frac{d^2u(x)}{dx^2} - \left(\frac{n}{ x} - \frac{1}{4}  - \frac{l(l+1)}{x^2} \right) u(x)= 0

Now, we know the short and long-range behaviour of u(x) , assume it to be

u(x) = \exp\left(-\frac{x}{2} \right) x^{l+1} y(x)

Then the equation of y(x) is

\displaystyle x \frac{d^2y}{dx^2} + \left( 2(l+1) - x\right) \frac{dy}{dx} +\left( n - l- 1 \right) y(x) = 0

This is the Laguerre equation

\displaystyle x \frac{d^2y}{dx^2} + \left( \alpha+1 - x\right) \frac{dy}{dx} + m y(x) = 0

where \alpha = 2l+1 and m = n-l -1. Therefore, the solution of the radial equation is,

R(r) = \frac{1}{r} A \exp\left(-\frac{x}{2} \right) x^{l+1} L_{n-l-1}^{2l+1}(x)

where A is normalization factor.

Notice that the Laguerre polynomial is only defined for m \geq 0, thus, n > l .

Advertisements

Using generating function to calculate integrals of Laguerre polynomial

Leave a comment

The generating function of Laguerre polynomial is

\displaystyle \sum_n^\infty L_n^\alpha(x) t^n = \frac{1}{(1-t)^{\alpha+1}} \exp \left(-\frac{tx}{1-t}\right) =G_\alpha(t, x)

We are going to evaluate the integral

\displaystyle \int_{0}^{\infty} x^{\alpha +k} e^{-x} L_m^{\beta}(x) L_n^{\alpha}(x) dx

Consider this integral

\displaystyle \int_0^\infty x^{\alpha+k} e^{-x} G_\alpha(t,x) G_{\beta}(s,x) dx

It is equal to

\displaystyle \int_0^\infty x^{\alpha+k} e^{-x} \sum_{n,m}^{\infty} L_n^\alpha(x) L_m^\beta(x) t^n s^m dx \\ = \sum_{n,m}^{\infty} t^n s^m  \int_0^\infty x^{\alpha+k} e^{-x} L_n^\alpha(x) L_m^\beta(x) dx \\ = \frac{1}{(1-t)^{\alpha+1}} \frac{1}{(1-s)^{\beta+1}} \int_0^\infty x^{\alpha+k} e^{-x} e^{-\frac{t x}{1-t} - \frac{s x}{1-s}} dx

It is easy to calculate the last integral,

\displaystyle \int_0^\infty x^{\alpha+k} e^{-x} e^{-\frac{t x}{1-t} - \frac{s x}{1-s}} dx   = \int_0^\infty x^{\alpha+k} \exp \left(-\frac{1- t s}{(1-t)(1-s)}x \right) dx

Replace variable,

\displaystyle \int_0^\infty x^{\alpha+k} e^{-x} e^{-\frac{t x}{1-t} - \frac{s x}{1-s}} dx    \\ = \frac{(1-t)^{(\alpha+1+k)}(1-s)^{(\alpha+1+k)}}{(1-t s)^{(\alpha+1+k)}}\int_0^\infty y^{\alpha+k} e^{-y} dy

The integral becomes

\displaystyle \sum_{n,m}^{\infty} t^n s^m  \int_0^\infty x^{\alpha+k} e^{-x} L_n^\alpha(x) L_m^\beta(x) dx = \frac{(1-t)^{k}(1-s)^{(\alpha-\beta+k)}}{(1-t s)^{(\alpha+1+k)}} (\alpha+k)!

Expand the right hand side,

\displaystyle (1-t)^k = \sum_i^k (-1)^i \begin{pmatrix} k \\ i \end{pmatrix} t^i

\displaystyle (1-s)^{(\alpha-\beta+k)} = \sum_i^{\alpha-\beta+k} (-1)^i \begin{pmatrix} \alpha-\beta+k \\ i \end{pmatrix} s^i

\displaystyle (1-ts)^{-(\alpha+1+k)} = \sum_i^\infty (-1)^i \begin{pmatrix} -(\alpha+k+1) \\ i \end{pmatrix} (t s)^i  = \sum_i^\infty \begin{pmatrix} \alpha+k+i\\ i \end{pmatrix} (t s)^i

We used

\displaystyle \begin{pmatrix} m \\ n \end{pmatrix} = \prod_{i=0}^{n-1} \frac{m-i}{n-i}

\displaystyle (-1)^n\begin{pmatrix} -m \\ n \end{pmatrix} = \prod_{i=0}^{n-1} \frac{m+i}{n-i} = \frac{(m+n-1)!}{n!(m-1)!}

At the last step. The product

\displaystyle \frac{(1-t)^{k}(1-s)^{(\alpha-\beta+k)}}{(1-t s)^{(\alpha+1+k)}} \\ = \sum_a^k \sum_{b}^{\alpha-\beta+k} \sum_c^\infty (-1)^{(a+b)} \begin{pmatrix} k \\ a \end{pmatrix} \begin{pmatrix} \alpha-\beta+k \\ b \end{pmatrix} \begin{pmatrix}\alpha+k+c \\ c \end{pmatrix} t^{(a+c)} s^{(b+c)}

By comparing the order of t^n s^m , the integral can be evaluated. With a+c = n, b+c = m

\displaystyle \int_0^\infty x^{\alpha+k} e^{-x} L_n^\alpha(x) L_m^\beta(x) dx \\ = (\alpha+k)! \sum_a^k \sum_{b}^{\alpha-\beta+k} \sum_c^\infty (-1)^{(a+b)} \begin{pmatrix} k \\ a \end{pmatrix} \begin{pmatrix} \alpha-\beta+k \\ b \end{pmatrix} \begin{pmatrix} \alpha+k+c \\ c \end{pmatrix}

When \alpha = \beta

\displaystyle \int_0^\infty x^{\alpha+k} e^{-x} L_n^\alpha(x) L_m^\alpha(x) dx \\ = (\alpha+k)! \sum_a^k \sum_{b}^{k} \sum_c^\infty (-1)^{(a+b)} \begin{pmatrix} k \\ a \end{pmatrix} \begin{pmatrix} k \\ b \end{pmatrix} \begin{pmatrix} \alpha+k+c \\ c \end{pmatrix} 


For example, k = 0,

\displaystyle \frac{(1-s)^{(\alpha-\beta)}}{(1-t s)^{(\alpha+1)}} = \sum_{b}^{\alpha-\beta} \sum_c^\infty (-1)^{b} \begin{pmatrix} \alpha-\beta \\ b \end{pmatrix} \begin{pmatrix} \alpha+c \\ c \end{pmatrix} t^{c} s^{(b+c)}

When \alpha \neq \beta, , n= m = 1 , only b = 0, c = 1

\displaystyle \int_0^\infty x^{\alpha} e^{-x} L_1^\alpha(x) L_1^\beta(x) dx = (\alpha)! \begin{pmatrix} \alpha-\beta \\ 0 \end{pmatrix} \begin{pmatrix} \alpha+1 \\ 1 \end{pmatrix} = (\alpha+1)!

When \alpha = \beta, , n = m  , only b = 0, c = n

\displaystyle \int_0^\infty x^{\alpha} e^{-x} (L_n^\alpha(x))^2 dx = (\alpha)! \begin{pmatrix} \alpha+n \\ n \end{pmatrix} = \frac{(\alpha+n)!}{n!}

For k = 1, \alpha = \beta, n= m, there are two terms, a = b = 0, c = n  and a = b = 1, c = n -1

\displaystyle \int_0^\infty x^{\alpha+1} e^{-x} (L_n^\alpha(x))^2 \\ = (\alpha+1)! \left(\begin{pmatrix} \alpha+n+1 \\ n \end{pmatrix} + \begin{pmatrix} \alpha+n \\ n-1 \end{pmatrix} \right) = \frac{(\alpha+n)!}{n!}(2n+\alpha+1)


We recovered all formula. Using generating function, we don’t have to worry about the condition of n, m, \alpha, \beta, k. We only need to fulfill the sum with condition a +c = n, b+c = m and a, b, c \geq 0 .

Qt Script Engine

Leave a comment

In order to use “any” function for fitting algorithm, the Qt script engine is a very powerful tool. And the basic usage is very simple.

QScriptEngine engine;
QString function = "p1*x + pow(x,2)";
double p1 = 3.2;
double x = 5;
engine.globalObject().setProperty("p1", p1);
engine.globalObject().setProperty("x", x);
ans = engine.evaluate(function_str).toNumber();

 

The above code will evaluate the expression p_1 x + x^2 . Although the running time will be a bit slower then hard code, the advantage is that, the expression can be read from a file.

Hartree-Fock method for Helium excited state

Leave a comment

There are two excited wavefunctions, singlet and triplet state. In the singlet state, the total spin is zero, while in the triplet state, the total spin is 1.

In any case, the Slater determinant is

\displaystyle \Psi(x,y) = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_1(x) & \phi_2(x) \\ \phi_1(y) & \phi_2(y) \end{vmatrix}

For spin-singlet state, we set,

\phi_1(q) = \uparrow \phi_{1s}(r),  \phi_2(q) = \downarrow \phi_{2s}(r)

For triplet state,

\phi_1(q) = \uparrow \phi_{1s}(r),  \phi_2(q) = \uparrow \phi_{2s}(r)

Since the Hamitonian is spin independent, we only take care of the spatial part.


For the triplet state, if we put in the wavefucntion in the Hamiltonian. Using the basis set approximation, The Fock matrix is

\displaystyle F_{ij} = H_{ij} + \sum_{hk}^M a_{\nu h}^*a_{\nu k} (G_{ij}^{hk} - \delta(\sigma_h, \sigma_k)G_{ik}^{hj})

The factor $latex \delta(\sigma_h, \sigma_k) $ is due to the spin component.


From the beginning, the Fock matrix is

\displaystyle \sum_{j}^M F_{ij} a_{\mu j} = \sum_{j}^M H_{ij} a_{\mu j} + \sum_{j}^M a_{\mu j} \sum_{hk}^M a_{\nu h}^*a_{\nu k} G_{ij}^{hk} - \sum_{j}^M a_{\nu j} \sum_{hk}^M a_{\nu h}^*a_{\mu k} G_{ij}^{hk}

We can see the exchange term is difference. We can interchange k \leftrightarrow j

\displaystyle \sum_{j}^M a_{\nu j} \sum_{hk}^M a_{\nu h}^*a_{\mu k} G_{ij}^{hk} = \sum_{k}^M a_{\nu k} \sum_{hj}^M a_{\nu h}^*a_{\mu j} G_{ik}^{hj}

and pull the a_{\mu j} out.


The calculation is straight forward. First, we calculate the 1s state due to the mean field created by the 2s orbital, then calculate the 2s state due to the mean field by the 1s orbital. And then repeat until converged.

Using the Hydrogen 1s, 2s, 3s, and 4s orbtial, we calculated

1s KE+PE = -2 Hartree = -54.42 eV
2s KE+PE = -0.4349 Hartree = -11.83 eV
The direct term = 0.2800 Hartree = 7.62 eV
The exchange term = 0.016 Hartree = 0.44 eV

The total energy = -2.171 Hartree = -59.07 eV.

Compare to the calculated ground state energy ( -77.11 eV), the excitation energy is 18.04 eV. And the ionization energy is 4.65 eV.

The experimental value for the triplet state excitation energy is 19.77 eV, and the ionization energy is 4.70 eV.

Consider the ground state energy is different from the experimental value by 2 eV. the calculation is fairly good.

 


For the singlet state, because the spin state of the two electron are opposite, the Fock matrix becomes Hartree matrix.

\displaystyle F_{ij} = H_{ij} + \sum_{hk}^M a_{\nu h}^*a_{\nu k} G_{ij}^{hk}

The calculated result is,

1s KE+PE = -2.000 Hartree = -54.42 eV
2s KE+PE = -0.400 Hartree = -10.89 eV
The direct term = 0.2531 Hartree = 6.89 eV
The exchange term = 0.040 Hartree = 1.09 eV

The total energy = -2.147 Hartree = -58.43 eV.

Compare to the calculated ground state energy ( -77.11 eV), the excitation energy is 18.68 eV. And the ionization energy is 4.00 eV.

The experimental value for the triplet state excitation energy is 20.55 eV, and the ionization energy is 3.92 eV.


It is interesting to compare with other formalism. Many other textbook use singlet wavefunction,

\displaystyle \Psi_S(x,y) = \frac{1}{\sqrt{2}}( \phi_1(x) \phi_2(y) + \phi_2(x) \phi_1(y)) \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow) 

The triplet state is the same,

\displaystyle \Psi_T(x,y) = \frac{1}{\sqrt{2}}( \phi_1(x) \phi_2(y) - \phi_2(x) \phi_1(y)) \frac{1}{\sqrt{2}}(\uparrow \uparrow) 

Since the Hamiltonian is spin independent, we can see, when we calculate the total energy of the singlet state and triplet state are

E_S = E_0 + J + K

E_T = E_0 + J - K

Thus, the energy difference between singlet and triplet state is 2 exchange term.

In our calculation, the wave function of the singlet state is difference. We directly calculate from the Slater determinant. And the Fock matrix is lack of the exchange term due to the opposite spin. However, the triplet state is the same, the exchange term is 0.44 eV. If we do not do Hartree-Fock on the singlet state, but calculate the singlet state using the exchange term, the singlet state energy would be -58.19 eV. Comparing with the Hartree-Fock result (-58.43 eV), I would say they agree. The small difference is due to the difference of the mean fields.

Hartree method for Helium ground state

Leave a comment

After long preparation, I am ready to do this problem.

The two electron in the helium ground state occupy same spacial orbital but difference spin. Thus, the total wavefunction is

\displaystyle \Psi(x,y) = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow) \psi(x) \psi(y)

Since the Coulomb potential is spin-independent, the Hartree-Fock method reduce to Hartree method. The Hartree operator is

F(x) = H(x) + \langle \psi(y)|G(x,y) |\psi(y) \rangle

where the single-particle Hamiltonian and mutual interaction are

\displaystyle H(x) = -\frac{\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{4\pi\epsilon_0 x} = -\frac{1}{2}\nabla^2 - \frac{Z}{x}

\displaystyle G(x,y) = \frac{e^2}{4\pi\epsilon_0|x-y|} = \frac{1}{|x-y|}

In the last step, we use atomic unit, such that \hbar = 1, m=1, e^2 = 4\pi\epsilon_0. And the energy is in unit of Hartree, 1 \textrm{H} = 27.2114 \textrm{eV}.


We are going to use Hydrogen-like orbital as a basis set.

\displaystyle b_i(r) = R_{nl}(r)Y_{lm}(\Omega) \\= \sqrt{\frac{(n-l-1)!Z}{n^2(n+l)!}}e^{-\frac{Z}{n}r} \left( \frac{2Z}{n}r \right)^{l+1} L_{n-l-1}^{2l+1}\left( \frac{2Z}{n} r \right) \frac{1}{r} Y_{lm}(\Omega)

I like the left the 1/r, because in the integration \int b^2 r^2 dr, the r^2 can be cancelled. Also, the i = nlm is a compact index of the orbital.

Using basis set expansion, we need to calculate the matrix elements of

\displaystyle H_{ij}=\langle b_i(x) |H(x)|b_j(x)\rangle = -\delta \frac{Z^2}{2n^2}

\displaystyle G_{ij}^{hk} = \langle b_i(x) b_h(y) |G(x,y) |b_j(x) b_k(y) \rangle


Now, we will concentrate on evaluate the mutual interaction integral.

Using the well-known expansion,

\displaystyle G(x,y) = \frac{1}{|x-y|}=\frac{1}{r_{12}} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4\pi}{2l+1} \frac{r_<^l}{r_>^{l+1}} Y_{lm}^{*}(\Omega_1)Y_{lm}(\Omega_2)

The angular integral

\displaystyle \langle Y_i(x) Y_h(y)| Y_{lm}^{*}(x) Y_{lm}(y) | Y_j(x) Y_k(y) \rangle \\ = \big( \int Y_i^{*}(x) Y_{lm}^{*}(x) Y_j(x) dx \big) \big( \int Y_h^{*}(y) Y_{lm}(y) Y_k(y) dy \big)

where the integral \int dx = \int_{0}^{\pi} \int_{0}^{2\pi} \sin(\theta_x) d\theta_x d\phi_x .

From this post, the triplet integral of spherical harmonic is easy to compute.

\displaystyle \int Y_h^{*}(y) Y_{lm}(y) Y_k(y) dy = \sqrt{\frac{(2l+1)(2l_k+1)}{4\pi (2l_h+1)}} C_{l0l_k0}^{l_h0} C_{lm l_km_k}^{l_hm_h}

The Clebsch-Gordon coefficient imposed a restriction on l,m.

The radial part,

\displaystyle \langle R_i(x) R_h(y)| \frac{r_<^l}{r_>^{l+1}} | R_j(x) R_k(y) \rangle \\ = \int_0^{\infty} \int_{0}^{\infty} R_i(x) R_h(y) \frac{r_<^l}{r_>^{l+1}} R_j(x) R_k(y) y^2 x^2 dy dx \\ = \int_0^{\infty} R_i(x) R_j(x) \\ \left( \int_{0}^{x} R_h(y) R_k(y) \frac{y^l}{x^{l+1}} y^2dy  + \int_{x}^{\infty} R_h(x)R_k(x) \frac{x^l}{y^{l+1}}  y^2 dy   \right) x^2 dx

The algebraic calculation of the integral is complicated, but after the restriction of l from the Clebsch-Gordon coefficient, only few terms need to be calculated.


The general consideration is done. now, we use the first 2 even states as a basis set.

\displaystyle b_{1s}(r) = R_{10}(r)Y_{00}(\Omega) = 2Z^{3/2}e^{-Zr}Y_{00}(\Omega)

\displaystyle b_{2s}(r) = R_{20}(r)Y_{00}(\Omega) = \frac{1}{\sqrt{8}}Z^{3/2}(2-Zr)e^{-Zr/2}Y_{00}(\Omega)

These are both s-state orbital. Thus, the Clebsch-Gordon coefficient

\displaystyle C_{lm l_k m_k}^{l_h m_h} = C_{lm00}^{00}

The radial sum only has 1 term. And the mutual interaction becomes

\displaystyle G(x,y) = \frac{1}{|x-y|}=\frac{1}{r_{12}} = 4\pi \frac{1}{r_>} Y_{00}^{*}(\Omega_1)Y_{00}(\Omega_2)

The angular part

\displaystyle \langle Y_i(x) Y_h(y)| Y_{lm}^{*}(x) Y_{lm}(y) | Y_j(x) Y_k(y) \rangle = \frac{1}{4\pi}

Thus, the mutual interaction energy is

G_{ij}^{hk} = \displaystyle \langle b_i(x) b_h(y) |G(x,y) |b_j(x) b_k(y) \rangle = \langle R_i(x) R_h(y)| \frac{1}{r_>} | R_j(x) R_k(y) \rangle

The radial part

G_{ij}^{hk} = \displaystyle \langle R_i(x) R_h(y)| \frac{1}{r_>} | R_j(x) R_k(y) \rangle \\ \begin{pmatrix} G_{11}^{hk} & G_{12}^{hk} \\ G_{21}^{hk} & G_{22}^{hk} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} G_{11}^{11} & G_{11}^{12} \\ G_{11}^{21} & G_{11}^{22} \end{pmatrix} & \begin{pmatrix} G_{12}^{11} & G_{12}^{12} \\ G_{12}^{21} & G_{12}^{22} \end{pmatrix} \\ \begin{pmatrix} G_{21}^{11} & G_{21}^{12} \\ G_{21}^{21} & G_{21}^{22} \end{pmatrix} & \begin{pmatrix} G_{22}^{11} & G_{22}^{12} \\ G_{22}^{21} & G_{22}^{22} \end{pmatrix} \end{pmatrix} \\= \begin{pmatrix} \begin{pmatrix} 1.25 & 0.17871 \\ 0.17871 & 0.419753 \end{pmatrix} & \begin{pmatrix} 0.17871 & 0.0438957 \\ 0.0439857 & 0.0171633 \end{pmatrix} \\ \begin{pmatrix} 0.17871 & 0.0438957 \\ 0.0438957 & 0.0171633 \end{pmatrix} & \begin{pmatrix} 0.419753 & 0.0171633 \\ 0.0171633 & 0.300781 \end{pmatrix} \end{pmatrix}

We can easy to see that G_{ij}^{hk} = G_{ji}^{hk} = G_{ij}^{kh} = G_{hk}^{ij} = G_{ji}^{kh} . Thus, if we flatten the matrix of matrix, it is Hermitian, or symmetric.


Now, we can start doing the Hartree method.

The general solution of the wave function is

\psi(x) = a_1 b_{1s}(x) + a_2 b_{2s}(x)

The Hartree matrix is

F_{ij} = H_{ij} + \sum_{h,k} a_h a_k G_{ij}^{hk}

The first trial wave function are the Hydrogen-like orbital,

\psi^{(0)}(x) = b_{1s}(r)

F_{ij}^{(0)} = \begin{pmatrix} -2 & 0 \\ 0 & -0.5 \end{pmatrix}  + \begin{pmatrix} 1.25 & 0.17871 \\ 0.17817 & 0.419753 \end{pmatrix}

Solve for eigen system, we have the energy after 1st trial,

\epsilon^{(1)} = -0.794702 , (a_1^{(1)}, a_2^{(1)}) = (-0.970112, 0.242659)

After 13th trial,

\epsilon^{(13)} = -0.880049 , (a_1^{(13)}, a_2^{(13)}) = (-0.981015, 0.193931)

F_{ij}^{(13)} = \begin{pmatrix} -2 & 0 \\ 0 & -0.5 \end{pmatrix}  + \begin{pmatrix} 1.15078 & 0.155932 \\ 0.155932 & 0.408748 \end{pmatrix}

Thus, the mixing of the 2s state is only 3.7%.

Since the eigen energy contains the 1-body energy and 2-body energy. So, the total energy for 2 electrons is

E_2 = 2 * \epsilon^{(13)} - G = -2.82364 \textrm{H} = -76.835 \textrm{eV}

In which ,

G = \langle \psi(x) \psi(y) |G(x,y) |\psi(x) \psi(y) \rangle = 1.06354 \textrm{H} = 28.9403 \textrm{eV}

So the energies for

From He to He++.  E_2 = -2.82364 \textrm{H} = -76.835 \textrm{eV}
From He+ to He++, E_1^+ = -Z^2/2 = 2 \textrm{H} = -54.422 \textrm{eV} .
From He to He+, is E_1 = E_2 - E_1^+ = -0.823635 \textrm{H} =  -22.4123 \textrm{eV}

The experimental 1 electron ionization energy for Helium atom is

E_1(exp) = -0.90357 \textrm{H} = -24.587 \textrm{eV}
E_1^+(exp) = -1.99982 \textrm{H} = -54.418 \textrm{eV}
E_2(exp) = -2.90339 \textrm{H} = -79.005 \textrm{eV}

The difference with experimental value is 2.175 eV. The following plot shows the Coulomb potential, the screening due to the existence of the other electron, the resultant mean field, the energy, and r \psi(x)

Helium.PNG


Usually, the Hartree method will under estimate the energy, because it neglected the correlation, for example, pairing and spin dependence. In our calculation, the E_2 energy is under estimated.

From the (a_1^{(13)}, a_2^{(13)}) = (-0.981015, 0.193931) , we can see, the mutual interaction between 1s and 2s state is attractive. While the interaction between 1s-1s and 2s-2s states are repulsive. The repulsive can be easily understood. But I am not sure how to explain the attractive between 1s-2s state.

Since the mass correction and the fine structure correction is in order of 10^{-3} \textrm{eV} , so the missing 0.2 eV should be due to something else, for example, the incomplete basis set.

If the basis set only contain the 1s orbit, the mutual interaction is 1.25 Hartree = 34.014 eV. Thus, the mixing reduce the interaction by 5.07 eV, just for 3.7% mixing

I included the 3s state,

\epsilon^{(13)} = -0.888475 , (a_1^{(13)}, a_2^{(13)}, a_3^{(13)}) = (0.981096, -0.181995, -0.06579)

The mutual energy is further reduced to 1.05415 Hartree = 28.6848 eV. The E_2 = -77.038 \textrm{eV} . If 4s orbital included, the E_2 = -77.1058 \textrm{eV} . We can expect, if more orbital in included, the E_2 will approach to E_2(exp).

 

Integrations of Laguerre polynomial

Leave a comment

Since the Laguerre polynomial is deeply connected to the hydrogen-like electron orbital. The radial solution is

\displaystyle R_{nl}(r) = A \frac{1}{r} \exp(- \frac{x}{2}) x^{l+1}L_{n-l-1}^{2l+1}(x)

\displaystyle x = \frac{2Z}{na_0} r

From the normalization condition, we can get the coefficient A

\displaystyle \int_0^{\infty} R_{nl}^2(r) r^2 dr

Beside of calculating the normalization factor, the general expectation value also need to evaluation of the integration of the Laguerre polynomial.

In here, we will show the calculation for 3 integrals:

\displaystyle \int_0^{\infty} x^{\alpha+m} e^{-x} L_n^\alpha(x) dx,  n,\alpha\geq0

\displaystyle \int_0^{\infty} x^{\alpha+k} e^{-x} (L_n^\alpha(x))^2 dx

\displaystyle \int_0^{\infty} x^{\alpha +k} e^{-x} L_m^{\beta}(x) L_n^\alpha(x) dx


Using the Rodrigues formula

\displaystyle L_n^\alpha(x) = \frac{1}{n!} x^{-\alpha} e^x \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})

\displaystyle \int_0^{\infty} x^{\alpha+m} e^{-x} L_n^\alpha(x) dx = \frac{1}{n!} \int_0^{\infty} x^{m} \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})dx

For m=0,

\displaystyle \int_0^{\infty} x^{\alpha+m} e^{-x} L_n^\alpha(x) dx \\ = \frac{1}{n!} \int_0^{\infty} \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})dx \\ = \frac{1}{n!} (F_{n-1}(\infty)-F_{n-1}(0) )

\displaystyle F_{n-1}(x) = \int_0^{\infty} \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})dx \\ = \sum_{i=0}^{n-1} (-1)^i \begin{pmatrix} n-1 \\ i \end{pmatrix} \frac{(n+\alpha)!}{(\alpha+1+i)!} x^{\alpha+1+i} e^{-x}

It is obvious that F(\infty) = 0 due to the e^{-x}. Since \alpha>0, then x^{\alpha+1+i} = 0 at x = 0. Thus,

\displaystyle \int_0^{\infty} x^{\alpha+m} e^{-x} L_n^\alpha(x) dx = 0 ,  m=0

Using integration by path,

\displaystyle \int_0^{\infty} x^{m} d \left(\frac{d^{n-1}}{dx^{n-1}}(e^{-x}x^{n+\alpha}) \right)dx \\ = [ x^{m} \frac{d^{n-1}}{dx^{n-1}}(e^{-x}x^{n+\alpha}) ]_0^{\infty} - (m) \int_0^{\infty} x^{m-1} \frac{d^{n-1}}{dx^{n-1}}(e^{-x}x^{n+\alpha})dx

For the same reason, the first term is zero for \alpha + m \geq 0. Repeat the integration by path k times,

\displaystyle \int_0^{\infty} x^{m} d \left(\frac{d^{n-1}}{dx^{n-1}}(e^{-x}x^{n+\alpha}) \right)dx \\ = (-1)^k \frac{(m)!}{(m-k)!} \int_0^{\infty} x^{m-k} \frac{d^{n-k}}{dx^{n-k}}(e^{-x}x^{n+\alpha})dx

When m \geq n || 0 > m, k can go to n, then,

\displaystyle \int_0^{\infty} x^{m} d \left(\frac{d^{n-1}}{dx^{n-1}}(e^{-x}x^{n+\alpha}) \right)dx \\ = (-1)^{n} \frac{(m)!}{(m-n)!} \int_0^{\infty} x^{m-n}(e^{-x}x^{n+\alpha})dx \\ = (-1)^{n} \frac{(m)!}{(m-n)!} (\alpha+m)!

When n > m > 0, k can only go to m. then,

\displaystyle \int_0^{\infty} x^{m} d \left(\frac{d^{n-1}}{dx^{n-1}}(e^{-x}x^{n+\alpha}) \right)dx \\ = (-1)^{m} (m)! \int_0^{\infty} \frac{d^{n-k}}{dx^{n-k}}(e^{-x}x^{n+\alpha})dx \\ = (-1)^{m} (m)!  \frac{d^{n-m-1}}{dx^{n-m-1}}(e^{-x}x^{n+\alpha}) = 0

For the similar result as F_{n-1}(x), the result is zero.

To summarize, the following formula suitable for all m > n || 0>m

\displaystyle \int_0^{\infty} x^{\alpha+m} e^{-x} L_n^\alpha(x) dx = (-1)^n (\alpha+m)! \begin{pmatrix} m \\ n \end{pmatrix}


To evaluate the integral,

\displaystyle \int_0^{\infty} x^{\alpha+k} e^{-x} (L_n^\alpha(x))^2 dx

We need the know that the Laguerre polynomial can be expressed as,

\displaystyle L_n^\alpha(x) = \sum_{i=0}^{n} (-1)^i \begin{pmatrix} n+\alpha \\ n-i \end{pmatrix} \frac{x^i}{i!}

Thus, we can evaluate

\displaystyle \int_0^{\infty} x^{\alpha+k} e^{-x} x^i L_n^\alpha(x) dx

Then combine everything,

\displaystyle \int_0^{\infty} x^{\alpha+k+i} e^{-x} L_n^\alpha(x) dx = (-1)^n (\alpha+i+k)! \begin{pmatrix} i+k \\ n \end{pmatrix}

put inside the series expression,

\displaystyle \int_0^{\infty} x^{\alpha+k} e^{-x} (L_n^\alpha(x))^2 dx = \sum_{i=0}^{n} (-1)^{i+n} \begin{pmatrix} n+\alpha \\ n-i \end{pmatrix} \begin{pmatrix} i+k \\ n \end{pmatrix} \frac{(\alpha+k+i)!}{i!}

In general, i + k \geq n || 0 > i+k .

For k = 0 , the sum only has 1 term for i = n

\displaystyle \int_0^{\infty} x^{\alpha} e^{-x} (L_n^\alpha(x))^2 dx = \frac{(\alpha+n)!}{n!}

Using the formula, for k=1, we have

\displaystyle \int_0^{\infty} x^{\alpha+1} e^{-x} (L_n^\alpha(x))^2 dx = \frac{(\alpha+n)!}{n!} (2n+\alpha +1)


To evaluate the expectation value of radial function

\displaystyle \langle R_{nl} | \frac{1}{r^m} | R_{nl} \rangle

We have to calculate the integral,

\displaystyle \int_0^\infty e^{-x} x^{2l+2-m} \left( L_{n-l-1}^{2l+1} (x) \right)^2 dx

For m = 0, we get the normalization constant,

\displaystyle A^2 \frac{na_0}{2Z} \int_0^{\infty} e^{-x} x^{2l+2} \left( L_{n-l-1}^{2l+1}(x) \right)^2 dx = 1

\displaystyle \langle \frac{1}{r} \rangle = \frac{1}{n^2} \frac{Z}{a_0}

\displaystyle \langle \frac{1}{r^2} \rangle = \frac{2}{n^3(2l+1)} \frac{Z^2}{a_0^2}

In general,

\displaystyle \langle \frac{1}{r^m} \rangle = \left(\frac{Z}{a_0}\right)^m \frac{2^{m-1}(n-l-1)!}{n^{m+1}(n+l)!} G_{nlm}

\displaystyle G_{nlm} = \sum_{i=0}^{n-l-1} (-1)^{n-l-1+i} \begin{pmatrix} n+l \\ n-l-1+i \end{pmatrix} \begin{pmatrix} 1-m+i \\ n-l-1 \end{pmatrix} \frac{(2l+2-m+i)!}{i!}


For the integral, for m \neq n

\displaystyle \int_0^{\infty} x^{\alpha +k} e^{-x} L_m^{\beta}(x) L_n^\alpha(x) dx

When k = 0, when m < n , the integral is zero.

When k \neq 0, m<n

\displaystyle \int_0^{\infty} x^{\alpha +k} e^{-x} L_m^{\beta}(x) L_n^\alpha(x) dx \\ = \sum_{i=0}^{m} \frac{(-1)^i}{i!}\begin{pmatrix} m+\beta \\ m-i \end{pmatrix} \int_0^{\infty} x^{\alpha+k+i} e^{-x} L_n^\alpha(x) dx \\ = \sum_{i=0}^{m} \frac{(-1)^{i+n}}{i!}\begin{pmatrix} m+\beta \\ m-i \end{pmatrix} \begin{pmatrix} k+i \\ n \end{pmatrix} (\alpha+k+i)!

The sum only non-zero when m\geq i > n-k or -k > i \geq 0

This shows that the Laguerre polynomial is orthogonal with weighting e^{-x} x^{\alpha}.

 

Hartree-Fock method for 1D infinite potential well

Leave a comment

Following the previous post, I tested my understanding on the Hartree method. Now, I move to the Hartree-Fock method. The “mean field” energy of the Hartree-Fock is

\displaystyle G_{\alpha \beta}= \sum_{j=i+1}^{N} \langle \psi_{\alpha}(i) \psi_{\nu} (j) | G(i,j) \left(| \phi_{\beta}(i) \phi_{\nu}(j) \rangle  - |\phi_{\nu}(i) \phi_{\beta}(j) \rangle \right) \\ = \langle \alpha \nu | \beta \nu \rangle - \langle \alpha \nu | \nu \beta \rangle

I also use the same method, in which, the trial wave function is replaced every iteration and the integration is calculated when needed.

Since the total wave function must be anti-symmetry under permutation, therefore one state can be occupied by only one particle. Thus, if we use the ground state in the mean field, the “meaningful” wave functions are the other states.

It is interesting that the mean field energy is zero when \mu = \nu , the consequence is no mean field for the same state. Suppose the mean field energy is constructed using the ground state, and we only use 3 states, the direct term is

G_D = \begin{pmatrix} \langle 11|11 \rangle & \langle 11|21 \rangle & \langle 11|31 \rangle \\  \langle 21|11 \rangle & \langle 21|21 \rangle & \langle 21|31 \rangle \\ \langle 31|11 \rangle & \langle 31|21 \rangle & \langle 31|31 \rangle \end{pmatrix}

The exchange term is

G_E = \begin{pmatrix} \langle 11|11 \rangle & \langle 11|12 \rangle & \langle 11|13 \rangle \\  \langle 21|11 \rangle & \langle 21|12 \rangle & \langle 21|13 \rangle \\ \langle 31|11 \rangle & \langle 31|12 \rangle & \langle 31|13 \rangle \end{pmatrix}

Due to the symmetry of the mutual interaction. We can see that some off-diagonal terms are cancelled. For example,

\displaystyle \langle 1 1 | 3 1 \rangle = \int \psi_1^*(x) \psi_1^*(y) \cos(x-y) \psi_3(x) \psi_1(y) dy dx

\displaystyle \langle 1 1 | 1 3 \rangle = \int \psi_1^*(x) \psi_1^*(y) \cos(x-y) \psi_1(x) \psi_3(y) dy dx

These two integrals are the same. In fact,

$latex \langle \alpha \nu | \beta \nu \rangle – \langle \alpha \nu | \nu \beta \rangle = $

whenever \alpha = \nu

\displaystyle \langle \nu \nu | \beta \nu \rangle = \int \psi_\nu^*(x) \psi_\nu^*(y) \cos(x-y) \psi_\beta(x) \psi_\nu(y) dy dx

\displaystyle \langle \nu \nu | \nu \beta \rangle = \int \psi_\nu^*(x) \psi_\nu^*(y) \cos(x-y) \psi_\nu(x) \psi_\beta(y) dy dx

We can see, when interchange x \leftrightarrow y , the direct term and the exchange term are identical, and then the mean field energy is zero. Also, when \beta = \nu the mean field energy is also zero.

Due to the zero mean field, the off-diagonal terms of the Hamiltonian H_{\alpha \beta} with \alpha = \nu or \beta = \nu are zero. Then, the eigen energy is the same as the diagonal term and the eigen vector is un-change.


Back to the case, the direct matrix at the 1st trial is,

G_D = \begin{pmatrix} 0.720506 & 0 & -0.144101 \\  0 & 0.576405 & 0 \\ -0.144101 & 0 & 0.555819 \end{pmatrix}

The exchange matrix is

G_E = \begin{pmatrix} 0.720506 & 0 & -0.144101 \\  0 & 0.25 & 0 \\ -0.144101 & 0 & 0.0288202 \end{pmatrix}

Thus, the Fock matrix is

F = \begin{pmatrix} 1 & 0 & 0  \\  0 & 4.3264 & 0 \\ 0 & 0 & 9.527 \end{pmatrix}

Therefore, the eigen states are the basis, unchanged

\displaystyle \psi_1(x) = \sqrt{\frac{2}{\pi}} \sin(x)

\displaystyle \psi_2(x) = \sqrt{\frac{2}{\pi}} \sin(2x)

\displaystyle \psi_3(x) = \sqrt{\frac{2}{\pi}} \sin(3x)

Only the eigen energies are changed, as \epsilon_1 = 1 \epsilon_2 = 4.3264 \epsilon_3 = 9.527

The total wave function for 2 particles at state 1 and state-\mu is

\Psi(x,y) = \frac{1}{\sqrt{2}} ( \psi_1(x) \psi_\mu(y) - \psi_\mu(x) \psi_1(y) )


I found that the “mean field” function is not as trivial as in the Hartree case, because of the exchange term. In principle, the mean field for particle-i at state-\mu is,

G(i) = \int \phi_\nu^*(j) G(i,j) \phi_\nu(j) dj -  \int \phi_\nu^*(j) G(i,j) \phi_\mu(j) dj

However, the direct term is multiply with \psi_\mu(i) , but the exchange term is multiply with \psi_\nu(i) , which are two different functions. i.e., the “mean field” is affecting two functions, or the “mean field” is shared by two states.

Although the mean field for single state can be defined using exchange operator symbolically, but I don’t know how to really implement into a calculation. Thus, I don’t know how to cross-check the result.

Older Entries Newer Entries