If we only switch on the transverse magnetic field for some time . after the field is off, the system will go back to the thermal equilibrium. it is due to the system is not completely isolated.

instead of consider a single spin, we have to consider the ensemble. and an ensemble is describe by the density matrix.

the reason for not consider a single spin state is, we don’t know what is going on for individual spin. in fact, in the previous section, the magnetization is a Marco effect. a single spin cannot have so many states, it can only have 2 states – up or down. if we insist the above calculation is on one spin, thus, it only give the chance for having that direction of polarization. which, is from many measurements.

so, for a single spin, the spin can only have 2 states. and if the transverse B field frequency is not equal to the Larmor frequency , and the pule is not a π-pulse, the spin has chance to go to the other state, which probability is given by a formula. and when it goes to relax back to the minimum energy state, it will emit a photon. but when it happen, we don’t know, it is a complete random process.

However, an ensemble, a collection of spins, we can have some statistic on it. for example, the relaxation time, T1 and T2.