
A treatment on Larmor Precession and 

Rabi resonance 
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Larmor Precession 
The Larmor precession is caused by an external magnetic field (B-field) on the magnetic 
moment (µ) original from the total angular momentum (J). The angular momentum J is 
from two sources, orbital angular momentum and spin. 

Angular Momentum 

� = � + � = (�� , ��, ��) 

Magnetic moment 

� = � ��
ℏ

 � = �� 
The Hamiltonian for the external B field is point alone positive z-axis. 



� = (0, 0, ��) 

� = −� ∙ � = −� � ∙ � = −��� �� 
The Schrodinger equation 

	ℏ 

� �|(�)〉 = ��|(�)〉 = −��� �� �|(�)〉 
�|(�)〉 = ���(

	
ℏ

 � �� � ��) �|(0)〉 
Recall the right-hand rotational operator on z-axis 

����� = ���(−
	
ℏ
� ��) 

Thus, we can re write the solution as �|(�)〉 = ���−������|(0)〉 = ��(���) �|(0)〉 
Which mean, the state �|(0)〉 is rotating on right –hand along the z-axis with angular 
velocity (−���). We define 

�� = −��� = ������ ������� ! 

Such that 

�� > 0 ⇔ �����	�� �	�ℎ� ℎ��
 ⇔ � < 0 

�� < 0 ⇔ �����	�� "��� ℎ��
 ⇔ � > 0 

Thus, we also use another terminology on rotation direction 

�	�ℎ� ℎ��
 ⇔ ��#	�	$� 
	�� �	�� 

"��� ℎ��
 ⇔ �����	$� 
	�� �	�� 

And in the following, we will use �� > 0. 
 
In order to see the rotation, we have to find the expectation of J, or the magnetization or 
the spin polarization. In classical analogy, it is equivalent to the Bloch vector. 

% = 〈�〉 = '〈��〉, 〈��〉, 〈��〉( = (%�,%�,%�) 

〈��〉� = 〈���−���� �� �������〉��� = 〈��〉��� cos(���) − 〈��〉��� sin(���)  

〈��〉� = 〈���−���� �� �������〉��� = 〈��〉��� sin����� + 〈��〉��� cos����� 



〈��〉� = 〈���−���� �� �������〉��� = 〈��〉��� 

We can see the magnetization rotate around the z-axis by ��� 
%��� = )cos����� − sin����� 0

sin����� cos����� 0

0 0 1

*%�0� 
this is just an ordinary rotation in real space. 

 
Here we listed the relation on µ, γ, J, and rotating direction: 
 

� ⇉ � � = � � � = −� ∙ � ��(−����) 

>0 parallel Min negative 

<0 anti-parallel Min positive 

 
 

� ⇄ � � = � � � = −� ∙ � ��(−����) 

>0 parallel Max negative 

<0 anti-parallel Max positive 

 



 
Notice: some reader may confuse
rotates backward but the expecta
operator are stick with the coordinate, in fact, the operator define the coordinate axis. 
Thus, the coordinate axis moving backward, the coordinate are moving forward.

Spin ½  

For 2 states system, the spin 

���� � ��|	

confuse on the rotation direction. How come the J 
backward but the expectation value moving forward? We can think that, the 

operator are stick with the coordinate, in fact, the operator define the coordinate axis. 
, the coordinate axis moving backward, the coordinate are moving forward.

system, the spin function is   

��0� � ��|	�0�� � ��� , ���������� 

	���� � � ��� ��� ��

2 �� �� , ��� �� ��

2 � � ��

 

on the rotation direction. How come the J operator 
can think that, the 

operator are stick with the coordinate, in fact, the operator define the coordinate axis. 
, the coordinate axis moving backward, the coordinate are moving forward. 

� ���  



 
Thus the population never changes. 

The magnetization is: 

%(0) =
ℏ

2
(2 � 	 cos��� , 2 � 	 sin��� ,  �	 −  		)  

%(�) =
ℏ

2
(2 � 	 cos���� + �� , 2 � 	 sin���� + �� ,  �	 −  		)  

For a mixed state, it will rotate on positive direction. 

For a pure state, the transverse components are all zero. 

 
Spin 1 

For 3 states system, the spin function is   

+(0) = ,�|�0�. = ( � ,  	����	/�,  
����	 0�) 

%�0� = ℏ 1√2 	� � cos�/� +  
 cos�/ − 0��√2 	� � sin�/� −  
 sin�/ − 0�� �	 −  
	 3 

+(�) = ,�|���. = (  �����−	���� ,  	����	/�,  
���� 	��� + 	0�) 

%��� = ℏ 1√2 	� � cos��� + /� +  
 cos��� − / + 0��√2 	� � sin��� + /� +  
 sin��� − / + 0�� �	 −  
	 3 

Density Matrix 
 
There is other way to visualize the effect of the spin polarization beside of the 
magnetization, by the density matrix. 

The density matrix for is defined as 

4 = 54��6,   4�� = +�
∗+� 

The size of the density matrix is determined by the size of the spinor.  



Notice:  the density matrix is taken not on single spin but on ensemble, thus, the 
average is automatically applied. 

4�� =
17 8 +�

∗+�
�� ����

 

Where N is total number of spin. 

The diagonal elements are called population 

4�� = |+�|	 

Which is the population of state 	. 
The other elements are called coherent. When there is a transverse component of the 
magnetization, it will be reflected at those elements. In order to have a transverse 
magnetization, the spins have to be point in same direction. I guess the name is come 
from this. If the spins are not coherent, they are pointing in different direction, the 
coherency lost.  

The density matrix is Hermitinian, which mean, it can be measure. 

Spin ½  

For single 2 state systems, the possibility of it in up-state or down-sate is  

+ = '  �,  	����	 � �(, ���  �,  	,� ∈ ���"# 

 �	 +  		 = 1 

The density matrix is  

4 = 94� 4�4�∗ 4�: = ;  �	  � 	���(	 �) � 	���(−	 �)  		 < 

The component of the density matrix can be interpolated in this way: 

4� = | �+〉 ����"��	�� 

4� = | �−〉 ����"��	�� 

4� =  �ℎ�����  

Notice that the populations are along the z-axis, thus the total magnetization density on 
z-axis is: 



%� = 4� − 4� 
 
The coherent is a historical name, in fact, it reflect the degree of transverse 
magnetization. To see what exactly the coherent is, let’s check the consistency with 〈�〉, 
which is the magnetization for single spin. 

% =
ℏ

2
(2 � 	 cos��� , 2 � 	 sin��� ,  �	 −  		)  

Or  

% =
ℏ

2
(2��(4�), 2=�(4�), 4� − 4�)  

Or  

% =
ℏ

2
(4� + 4�∗,4� − 4�∗, 4� − 4�)  

Notice that  

4� + 4� = 1 

Thus all combination of the density matrix has a real meaning. 

4� + 4� = 1 Total population 

4� − 4� = %� Longitudinal Magnetization 

�� + ��
∗ = �� Cosine of Transverse Magnetization 

�(�� − ��
∗) = �� Sine of Transverse Magnetization 

 
Thus, the direction of the magnetization is given by the phase different of up state and 
down state. And we can see the density matrix is equivalent representation of the spin 
polarization. For a state with 

+ = �  �,  	� = (1, 0) 

4 = 91 0

0 0
: 

% =
ℏ

2
(0, 0, 1) 

 
In the case of Larmor precession, the state is: 



+(0) = ,�|�0�. = ( � ,����	�� 	) 

+(�) = ,�|���. = ( ��� 9−	 ��

2
�:  � ,��� 9	 ��

2
� + 	�:  	)  

4(0) = ; �	 0

0  		< 

4(�) = ;  �	  � 	���(	 � � + 	 �) � 	���(−	 � � − 	 �)  		 < 

%(�) =
ℏ

2
(2 � 	 cos���� + �� , 2 � 	 sin���� + �� ,  �	 −  		)  

 
Thus, for a mixed state, it rotate right hand for �� > 0 ⇔ � < 0 

If there is not magnetization,  

% = 0 �� 4 = 0 ⇒  � =  	 = 0 

Suppose there are N spins,  

+� =
178 �

��

, +� =
178 	

��

, � �,  	� ∈ >���"�� 

It is possible to have the average spinor, which norm is smaller than 1.  

Spin 1 

For a single 3 state system, the spinor has 3 components 

+(0) = ,�|�0�. = ( � ,  	����	/�,  
����	 0�) 

4(0) = 1  �	  � 	���(	 /)  � 
���(	 0) � 	���(−	 /)  		  	 
���(−	 / + 	0) � 
���(−	 0)  	 
���(	 / − 	0)  
	 3 

%�0� = ℏ 1√2 	� � cos�/� +  
 cos�/ − 0��√2 	� � sin�/� −  
 sin�/ − 0�� �	 −  
	 3 

+(�) = ,�|���. = (  �����−	� �� ,  	����	/�,  
���� 	 � � + 	0�) 



4(�) = 1  �	  � 	���(−	�� + 	 /)  � 
���(	 0) � 	���(	�� − 	 /)  		  	 
���(	�� − 	 / + 	0) � 
���(−	 0)  	 
���(−	�� + 	 / − 	0)  
	 3 

%��� = ℏ 1√2 	� � cos��� + /� +  
 cos��� − / + 0��√2 	� � sin��� + /� +  
 sin��� − / + 0�� �	 −  
	 3 

Lets investigate what the components of the density matrix means. 

For a spin-1 system, the diagonal elements are still showing the population of each 
state. But the coherent are little bit complicated. For simplicity, we set the phase 
different on each state become zero. 

4(�) = 1  �	  � 	���(−	��)  � 
 � 	���(	��)  		  	 
���(	��) � 
  	 
���(−	��)  
	 3 

And denote it  

4(�) = ) 4� 4�� 4��4��∗ 4� 4��4��∗ 4��∗ 4� * 

 

And compare it to the magnetization 

%��� = ℏ 1√2 	 cos���� � � +  
�√2 	 sin���� � � +  
� �	 −  
	 3 

Since the �|1,0〉 state does not have any projection on the z-axis, the longitudinal 
magnetization is just  

%� =  �	 −  
	 = 4� − 4� 

The transverse magnetization must be given by the coherent. The transverse 
magnetization is: 

%� = '%�,%�( = ℏ√2 	� � +  
��cos���� , sin����� 
Or related to the density matrix elements 



%� =
1

2
'���4�� + 4���, =��−4�� + 4���( 

Small summery  
�|�0�〉 = 8 |��〉 �  

      ������     ?@@@@@@@A �|���〉 = 8��(��)|��〉 � 

+�(0) =  �  
      ������     ?@@@@@@@A +�(�) = ���(��) � 

4���0� = +�
∗�0�+�(0)

      ������     ?@@@@@@@A 4����� = +�∗���+�(�) 

%�(0) = ,(0)|��|(0).       ������     ?@@@@@@@A %�(0) = ,(�)|��|(�). 
The transformation of the density matrix can be revealed by those relationships. 

4��� = ���−���4�0���(��) 

 

Rabi Resonance 
Since the angular momentum is rotating at positive direction for �� > 0. Thus, our 
perpendicular B-field should be applied on positive direction. 

�� = (�� cos�� �� ,�� sin�� �� , ��) 

The Hamiltonian  

�� = −� ∙ �� = −���' �� cos�� �� + �� sin�� ��( − ����� 
or , in rotation operator 

�� = ������ �������−� �� + ���� 

and it make a very good sense, since   

���� �������−� �� 
 
represents Jx rotating in positive direction. 
 
But solving this is very inconvenient, but still possible. 



Rotating Frame 

 
If we change our frame to the rotating frame that move with the rotating B-field, we can 
make the Hamiltonian be time-independent again.  

The rotating state is related with the static state by: 

|��〉 = ��(−��)|�〉 
The find out the Schrodinger equation in rotating frame, we differentiate the ket. 

	ℏ 

� |��〉 = 	ℏ 

���(−��)| �〉 + ��(−��)	ℏ 

� | �〉  
	ℏ 

� |��〉 = −�����(−��)|�〉 + ��(−��)�|�〉 

	ℏ 

� |��〉 = −���| ��〉 + ��(−��)���(��)|��〉 = ��|��〉 
�� = ��(−��)���(��) − ��� 

The first term on the right hand side is just rotating the Hamiltonian on negative direction, 
since the rotating frame is moving in positive direction respect to the static frame. And 
the Hamiltonian sticks with the static frame. And the 2nd term rises by the rotating frame. 
The rotating frame can see an extra B-field with amplitude � = −� ����� . 

Solving Larmor precession in rotating frame 

The static Hamiltonian is  

�� = ���� 

�� = ���−�������(��) − ��� 
�� = ���−���(����)��(��) − ��� 

�� = (�� − �) �� 
Thus, when �� = �, the rotating frame is moving with the spin, it see a static spin. 
 

Solving Transverse B-field in rotating frame  



The static Hamiltonian is  

�� = ������ �������−� �� + ���� 

Under the rotating frame, the rotating Hamiltonian is: 

�� = ���−�������(��) − ��� 
�� = ���−���(������ �������−� �� + ����)��(��) − ��� 

�� = ���� + (�� − �) �� 
 
Thus, when �� = �, the angular momentum is rotating on x-axis with frequency  

�� = ��B	 C������ ! 
 
For �� ≠ �, the angular momentum is rotating on the shifted axis 

���� + (�� − �) �� 

with effective frequency 

���� = D��
	 + ��� − ��	 

Spin ½  

We have to solve the state to find the probability of the angular momentum on the each 

state. (Be careful, cannot use ���(−
�

ℏ
����� + +��� − �� ��� to this case, since Jx and 

Jz does not commute) 
 
First, we find of the Hamiltonian in |+>  ��
 |−> basic. 

,+|��|+. = ��,+|��|+. + ��� − ��,+| ��|+. =
ℏ

2
��� − �� 

,+|��|−. = ��,+|��|−. + ��� − ��,+| ��|−. =
ℏ

2
�� 

,−|��|+. = ��,−|��|+. + ��� − ��,−| ��|+. =
ℏ

2
�� 

,−|��|−. = ��,−|��|−. + ��� − ��,−| ��|−. = −
ℏ

2
��� − �� 



�� =
ℏ

2
9�� − � ���� −�� + �: 

 
The initial condition is all up-state at the beginning. 

+�(0) = ,�|��0�. = (1 , 0) 

to solve this, there are at least 3 methods, one is diagonalizable the matrix, solve the 
coupled equations directly, and using time dependent eigen state as basic and find out 
the coupled equations. 

The solution is: 

+���� = ;cos E1

2
�����F − 	 �� − �����

sin E1

2
�����F , −	 ������

sin E1

2
�����F< 

the probability of going to down state or spin flip is  

|+�����|	 = ; ������

<	

sin	 E1

2
�����F 

The magnetization is: 

%� =
ℏ

2
 

G
HH
HI

2��� − ��������
	

sin	 E1

2
�����F

 −
������

sin'�����(
1����
	

'��� − ��	 + ��
	 cos'�����((J

KK
KL

 

 
Which trace a circle around the shifted axis. 
 
For �� = �, ���� = �� 

%� =
ℏ

2
�0, − sin����� , cos������ 

Which is rotate in right hand around x-axis.  
 
To find the state in Lab frame, using  

|�〉 = ��(��)|��〉 
which is simply adding a phase. 



+��� =  

G
HI;cos E1

2
�����F − 	 �� − �����

sin E1

2
�����F<��� E−

	
ℏ
��F

−	 ������

sin E1

2
�����F ��� E	

ℏ
��F J

KL 

The magnetization in the Lab frame: 

%

=
ℏ

2

G
HH
HI

2������
	

sin E1

2
�����F E���� cos E1

2
�����F sin���� + ��� − �� sin E1

2
�����F cos����F

������
	

E2��� − �� sin	 E1

2
�����F sin���� − ���� sin'�����( cos����F

1����
	

'��� − ��	 + ��
	 cos'�����(( J

KK
KL

 

 
when under Rabi resonance, �� = � 

% =
ℏ

2
1sin���� sin'�����(

− sin����� cos����
cos����� 3 

which is the oscillation of 2 frequencies - the Lissajous curve on a sphere. 
 

Relaxation 
If we only switch on the transverse magnetic field for some time (M), after the field is off, 
the system will go back to the thermal equilibrium. it is due to the system is not 
completely isolated.  
 
Instead of consider a single spin, we have to consider the ensemble. And an ensemble 
is described by the density matrix or the magnetization. This is visible effect by the spin.  
 
The reason for not consider a single spin state is, we don’t know what is going on for 
individual spin. in fact, in the previous section, the magnetization is a Marco effect. a 
single spin cannot have so many states, it can only have 2 states - up or down. if we 
insist the above calculation is on one spin, thus, it only give the chance for having that 
direction of polarization, which is obtained from many measurements.  
 
So, for a single spin, the spin can only have 2 states. And if the �� ≠ �, or ����  M ≠ N, 



the spin has chance to go to the other state, which probability is given by above. And 
when it goes to relax back to the minimum energy state, it will emit a photon. But when 
it happens, we don’t know, it is a complete random process.  
 
However, an ensemble, a collection of spins, we can have some statistic on it. for 
example, the relaxation time, T1 and T2. 
 
Any decay is represented by  

��� E−
�OF 

where T is relaxation time. 
 
since T1 is the longitudinal relaxation time and T2 is transverse relaxation time.  
 
thus, if we set the lowest energy state is the rest state.  

4�(�) = 1 − �1 − 4����� E−
�O�F 

4���� = 4���� E−
�O�F 

4���� = 4���� E−
�O	F 

The magnetization becomes: 

% =
ℏ

2
;2 ���4����� E−

�O	F , 2 =��4����� E−
�O	F , 1 − �1 − 4� + 4����� E−

�O�F< 

  


