

The Argonne HELIOS spectrometer & its scientific discoveries

Tsz Leung (Ryan) TANG Post-Doctoral Researcher

0j15/2

0i13/2

0h_{11/2}

- 0g_{9/2}

Magic number appears.

Nuclear structure

- Nucleons are moving in a *MEAN* field
- This mean field is created by the nucleons themselves

Hartree-Fock approach (Independent Particle Model)

- single particle energy/state
- occupancy

1-body interaction

Nuclear structure

- Nucleons are moving in a *MEAN* field
- This mean field is created by the nucleons themselves

Hartree-Fock approach (Independent Particle Model)

- single particle energy/state
- occupancy

1-body interaction

Many-body interaction Mutual Interactions

Perturbation of the single particle state

Transfer reaction – to study the single particle state

(d,p) neutron transfer study the emptiness of orbital

study the fullness of orbital

(p,d) neutron pickup

Nuclear structure of *unstable* Nuclei

R. Kanungo, Phys. Scr. T152(2013) 014002

- New shell closure
- Neutron Halo
- Location of dripline
- Island of inversion

To study unstable nuclei \rightarrow need <u>inverse kinematics</u>

Convention experimental setups

Inverse Kinematics

Difficulties (Unstable Beam)

6 MeV/u Idea of HELIOS 40 Q = 6.24 MeV d(²⁸Si,p)²⁹Si 30 inverse E_{lab.} (MeV) ²⁸Si(*d*,*p*)²⁹Si 20 'conventional' B $10 - \theta_{c.m.} < 30^{\circ}$ Х θ_{c.m.}< 30° Х 0L 0 30 60 90 120 150 180 θ_{lab.} (deg.)

A charged particle moves in a helix orbit. It will return to the beam axis!!

How about we placed a detector on the axis in a uniform *MAGNETIC FIELD*?

Can we measure

- Energy OK!
- Scattering angle ???

Transfer Reaction (II)

In the Center of Momentum frame....

Two degrees of freedom are

- scattering angle θ_{cm}
- excitation energy E_x

$$\mathbb{P}'_{b} = \begin{pmatrix} E'\\ \vec{p} \end{pmatrix}$$
$$\mathbb{P}_{b} = \begin{pmatrix} E\\ \vec{k} \end{pmatrix} = \begin{pmatrix} \gamma E' + \gamma \beta (\hat{\beta} \cdot \vec{p})\\ (\gamma \beta E' + \gamma (\hat{\beta} \cdot \vec{p})) \hat{\beta} + (\hat{n} \cdot \vec{p}) \hat{n} \end{pmatrix}$$

Although transfer reaction usually non-relativistic, for simplicity and generosity, lets do it in relativistic way.

In Magnetic field

 $\mathbb{P}_{b} = \begin{pmatrix} E \\ \vec{k} \end{pmatrix} = \begin{pmatrix} \gamma E' + \gamma \beta (\hat{\beta} \cdot \vec{p}) \\ (\gamma \beta E' + \gamma (\hat{\beta} \cdot \vec{p})) \hat{\beta} + (\hat{n} \cdot \vec{p}) \hat{n} \end{pmatrix}$

 2π

ch
$$z_{cyc} = \frac{2\pi}{cZB} (\vec{k} \cdot \hat{z})$$

 $z_{cyc} = \frac{2\pi}{cZB} ((\gamma \beta E' + \gamma (\hat{\beta} \cdot \vec{p})) (\hat{\beta} \cdot \hat{z}) + (\hat{n} \cdot \vec{p}) (\hat{n} \cdot \hat{z}))$
 $z_{cyc} = \frac{2\pi}{cZB} (\gamma \beta E' + \gamma (\hat{\beta} \cdot \vec{p}))$
 $\beta p \cos \theta_{cm}$

The $\cos \theta_{cm}$ is proportional to the z_{cyc} !!!

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\phi d\cos\theta} = \frac{d\sigma}{d\phi \, dz_{cyc}} \text{Bornusll}$$

In Magnetic field

$$\mathbb{P}_{b} = \begin{pmatrix} E \\ \vec{k} \end{pmatrix} = \begin{pmatrix} \gamma E' + \gamma \beta (\hat{\beta} \cdot \vec{p}) \\ (\gamma \beta E' + \gamma (\hat{\beta} \cdot \vec{p})) \hat{\beta} + (\hat{n} \cdot \vec{p}) \hat{n} \end{pmatrix}$$

E (MeV) versus z (m)

$$z_{cyc} = \frac{2\pi}{cZB} \left(\gamma \beta E' + \gamma \left(\hat{\beta} \cdot \vec{p} \right) \right)$$

$$E = \gamma E' + \gamma \beta \big(\hat{\beta} \cdot \vec{p} \big)$$

 $E = \frac{1}{\gamma}E' + \frac{cZB}{2\pi}\beta z_{cyc}$ different charged particle has different slope !

Simplicity of HELIOS

Large acceptance! → Good statistics Good energy resolution (Silicon detectors) Relatively cheap! (for above cases)

Building of HELIOS

Decommissioned Magnetic Resonance Imaging (MRI) device

12/14/2018

Magnetic field map

Position Sensitive Si detectors

- 4 sides, 6 detectors long
- Detector size, 9×50 mm
- 700-µm thick (e.g. ~10 MeV protons)
- Φ coverage, 0.48 of 2π
- Ω_{detector} = 21 msr
- $\Omega_{array} = 493 \text{ msr}$

J. C. Lighthall et al., Nucl. Instrum. Methods Phys. A 662, 97 (2010)

The first experiment – Structure of ¹³B

0p_{3/2}

0s_{1/2}

¹²B(d,p)¹³B @ 5.77 MeV/u, 10⁵ pps B.B. Back et al., PRL 104, 132501 (2010)

- Many previous study using (t,p), (α,t) lack of energy resolutions.
- (d,p) reaction is relatively clean

simple picture 12B(d,p)13B 10. 4.0o (arb. units) 1.0 ¹³Β, *J*^π 0.4 3.48 MeV 3.68 MeV 20 30 5.02 θ_{c.m} (deg) 4.83 100 ${}^{12}B(d.p){}^{13}B$ 50 4.13 3.71 3.68 3.5 Eexc. (MeV) 3.48 -500 \approx -600 2 (mm) 0.03/2--700 Ep (MeV) 13**R**

energy resolution : ~43 keV

(a) 2:0.0

1:0.65

3:1.38

2.08

θ_{cm} (deg)

Structure of ¹⁴B

¹³B(d,p)¹⁴B @ 15.7 MeV/u, ~ 3 x 10⁴ pps S. Bedoor *et al.*, PRC 88, 011304 (2013)

- ¹⁴B is the last N=9 isotone, $S_n = 0.969$ MeV
- Little knowledge about ¹⁴B
- (d,p) reaction is one of the best tool.

12C

11B

10Be

13C

12B

11Be

14C

13B

12Be

15C

14B

13Be

N=9

16C

15B

14Be

17C

16B

15Be

da/dΩ (mb/sr)

= 0

= 2

= 0 + 2

Structure of ¹⁶C

¹⁵C(d,p)¹⁶C @ 8.2 MeV/u, 2 x 10⁶ pps A.H. Wuosmaa *et al.*, PRL 105, 132501 (2010)

(MeV)

Counts/8 keV

Motivation:

- B(E2) values were much smaller from stable nuclei
- Lifetime measurement for 2⁺₁ state report much larger B(E2).

Conclusion:

- The spectroscopic factors are consistent with shell model calculation.
- $0_1^+ = \sqrt{0.3} \left(1s_{\frac{1}{2}} \right)^2 + \sqrt{0.7} \left(0d_{\frac{5}{2}} \right)^2$
- 16 C is well described by WBP \rightarrow not very exotic nucleus.

N=10

Structure of ¹⁸N

¹⁷N(d,p)¹⁸N @ 13.6 MeV/u, 2x10⁴ pps, Purity = 25-75%

C.R. Hoffman et al PRC 88 044317 (2013)

I. Talmi and I. Unna, PRL 4, 469 (1960).

160 170 180 190 200 210 220 15N 16N 17 N 18N 19N 20N 21N 14C 17C 18C 19C 15C 16C 20C

N=11

First experimental proof of <u>DUAL</u> description!!! single particle picture and collective picture

Structure of ²⁰O

¹⁹O(d,p)²⁰O @ 6.61 MeV/u C.R. Hoffman *et al.*, PRC 85, 054318 (2012)

There are only (t,p) or beta decay study. \rightarrow Hard to study the single particle states.

- Only need to use $Od_{5/2}$ and $1s_{1/2}$ to describe the result. *Consistent with* N = 14 *shell closure*
- The USD Single particle energies are agreed with the result.

18F	19F	20F	21F	22F	23F	24F	
170	180	190	200	210	220	230	
16N	17N	18N	19N	20N	21N	22N	
N=12							

		$\langle (d_{5/2})^2 J V (d_{5/2})^2 J \rangle$			
<i>E</i> * (MeV)	J	²⁰ O	USDA		
0.00	0	2.74 [2.20]	2.49		
4.46	0	-2.74[-2.50]	- 2.48		
1.67	2	- 1.37 [- 0.08]	- 0.99		
3.57	4	0.53 [0.91]	-0.21		

Structure of ²²F

²¹F(d,p)²²F @ 10 MeV/u, ~3x10⁴ pps

J. Chen et al., PRC 98, 014325 (2018)

- There are many doubly magic oxygen
- Study the TBMEs between $\pi Od_{5/2}$ to sd-shell neutrons

22Ne

21F

200

23Ne

22F

210

N=13

24Ne

23F

220

25Ne

24F

230

21Ne

20F

190

20Ne

19F

180

 0^{a}

1^a

2

3

4

5

Structure of ¹³⁷Xe

¹³⁶Xe(d,p)¹³⁷Xe @ 10 MeV/u

B.P. Kay et al., PRC 84, 024325 (2011)

- Testing capability to do heavy ion reaction
- Determine the energy centroid of $h_{9/2}$ and $i_{13/2}$

134Cs	135Cs	136Cs	137Cs	138Cs	139Cs	140Cs	141Cs
133Xe	134Xe	135Xe	136Xe	137Xe	138Xe	139Xe	140Xe
1321	133I	134I	135I	136I	1371	138I	139I

Structure of ⁸⁶Kr

89Rb 90Rb 36Rb 87Rb 88Rb 86Kr $87 \mathrm{Kr}$ 89Kr 85Kr 88Kr Z=36 84Br 85Br 86Br 87Br 88Br N=51

⁸⁶Kr(d,p)⁸⁷Kr @ 10 MeV/u, 5 x 10⁷ pps D.K. Sharp *et al.*, PRC 87, 014312 (2013)

40

30

10

-60

(E) 20

(d,d)

(12C,12C)

Si array

-20

-40

Structure of ^{12,13}B

¹⁴C(d,α)¹²B @ 17.1 MeV/u, 10⁷⁻⁸ pps
 ¹⁵C(d,α)¹³B @ 15.7 MeV/u, 5 x 10⁵ pps

A. H. Wuosmaa et al., PRC 90, 061301 (2014)

- (d,α) reaction is highly selective,
 - the neutron + proton has to be aligned.
- Populate inaccessible states (T=0) by single-particle transfer

12/14/2018

Seminar @ HKU

31

Future of HELIOS - ISOLDE Solenoidal Spectrometer

HIGH INTENSITY AND ENERGY UPGRADE

- ISOLEDE use CERN proton beam to create various isotopes
- Boost energy to 10 MeV/u from light to heavy nuclei
- Intensity to 10⁶⁻⁷ pps, even for radioactive beam

Summary

- HELIOS is a *large* acceptance, *small* energy resolution spectrometer.
- The measurement and data analysis is relatively simple and easy.
- It made a lot discoveries in the past decade.(will be more!!)

