The Argonne HELIOS spectrometer \& its scientific discoveries

Tsz Leung (Ryan) TANG
Post-Doctoral Researcher

Experimental Chart of Nuclides .

Because of spin-orbital coupling, Magic number appears.

(2)

Shell Model of Nuclel

Nuclear structure

- Nucleons are moving in a MEAN field
- This mean field is created by the nucleons themselves

Hartree-Fock approach
(Independent Particle Model)

- single particle energy/state
- occupancy

1-body interaction

${ }^{7}$ Li

Nuclear structure

- Nucleons are moving in a MEAN field
- This mean field is created by the nucleons themselves

Hartree-Fock approach
(Independent Particle Model)

- single particle energy/state
- occupancy

1-body interaction

Many-body interaction Mutual Interactions

Perturbation of the single particle state

${ }^{7}$ Li

Transfer reaction - to study the single particle state

(d,p) neutron transfer
study the emptiness of orbital
(p, d) neutron pickup
study the fullness of orbital

Spin-isospin factor
Experimental
differential cross section:

Nuclear structure of unstable Nuclei

R. Kanungo, Phys. Scr. T152(2013) 014002

- New shell closure
- Neutron Halo
- Location of dripline
- Island of inversion

To study unstable nuclei \rightarrow need inverse kinematics

Convention experimental setups

Inverse Kinematics

Difficulties (Unstable Beam)

Inverse kinematics \rightarrow Energy compression Unstable Beam \rightarrow low beam intensity
\rightarrow large acceptance

Idea of HELIOS

A charged particle moves in a helix orbit. It will return to the beam axis!!

How about we placed a detector on the axis in a uniform MAGNETIC FIELD?

Can we measure

- Energy - OK!
- Scattering angle - ???

Transfer Reaction (II)

In the Center of Momentum frame....

Two degrees of freedom are

- scattering angle $\theta_{c m}$
- excitation energy E_{x}

$$
\begin{aligned}
& \mathbb{P}_{b}^{\prime}=\binom{E^{\prime}}{\vec{p}} \\
& \mathbb{P}_{b}=\binom{E}{\vec{k}}=\binom{\gamma E^{\prime}+\gamma \beta(\hat{\beta} \cdot \vec{p})}{\left(\gamma \beta E^{\prime}+\gamma(\hat{\beta} \cdot \vec{p})\right) \hat{\beta}+(\hat{n} \cdot \vec{p}) \hat{n}}
\end{aligned}
$$

Although transfer reaction usually non-relativistic, for simplicity and generosity, lets do it in relativistic way.

In Magnetic field

$\mathbb{P}_{b}=\binom{E}{\vec{k}}=\binom{\gamma E^{\prime}+\gamma \beta(\hat{\beta} \cdot \vec{p})}{\left(\gamma \beta E^{\prime}+\gamma(\hat{\beta} \cdot \vec{p})\right) \hat{\beta}+(\hat{n} \cdot \vec{p}) \hat{n}}$

The helix radius $\quad \rho=\frac{\vec{k} \cdot \widehat{x y}}{c Z B} \quad c=300$
The helix period $\quad T_{c y c}=\frac{2 \pi \rho}{v_{x y}}=\frac{2 \pi}{c Z B} \frac{\vec{k} \cdot \widehat{x y}}{v_{x y}} \quad \vec{k}=\vec{\beta} E \rightarrow \vec{k} \cdot \widehat{x y}=\frac{v_{x y}}{c} E$

$$
T_{c y c}=\frac{2 \pi}{c^{2} Z B} E
$$

The helix patch $\quad z_{c y c}=v_{z} T_{c y c}=\frac{2 \pi}{c Z B}(\vec{k} \cdot \widehat{x y}) \frac{v_{z}}{v_{x y}} \quad \frac{v_{z}}{v_{x y}}=\frac{\vec{k} \cdot \hat{z}}{\vec{k} \cdot \widehat{x y}}$

$$
z_{c y c}=\frac{2 \pi}{c Z B}(\vec{k} \cdot \hat{z})
$$

In Magnetic field

$$
\mathbb{P}_{b}=\binom{E}{\vec{k}}=\binom{\gamma E^{\prime}+\gamma \beta(\hat{\beta} \cdot \vec{p})}{\left(\gamma \beta E^{\prime}+\gamma(\hat{\beta} \cdot \vec{p})\right) \hat{\beta}+(\hat{n} \cdot \vec{p}) \hat{n}}
$$

The helix patch

$$
\begin{aligned}
& z_{c y c}=\frac{2 \pi}{c Z B}(\vec{k} \cdot \hat{z}) \\
& z_{c y c}=\frac{2 \pi}{c Z B}\left(\left(\gamma \beta E^{\prime}+\gamma(\hat{\beta} \cdot \vec{p})\right)(\hat{\beta} / \hat{z})+(\hat{n} \cdot \vec{p})(\hat{n} / \hat{z})\right) \\
& z_{c y c}=\frac{2 \pi}{c Z B}\left(\gamma \beta E^{\prime}+\gamma(\hat{\beta} \cdot \vec{p})\right) \\
& \quad \beta p \cos \theta_{c m}
\end{aligned}
$$

The $\cos \theta_{c m}$ is proportional to the $z_{c y c}$!!!

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma}{d \phi d \cos \theta}=\frac{d \sigma}{d \phi d z_{c y c}}
$$

In Magnetic field

$$
\mathbb{P}_{b}=\binom{E}{\vec{k}}=\binom{\gamma E^{\prime}+\gamma \beta(\hat{\beta} \cdot \vec{p})}{\left(\gamma \beta E^{\prime}+\gamma(\hat{\beta} \cdot \vec{p})\right) \hat{\beta}+(\hat{n} \cdot \vec{p}) \hat{n}}
$$

The helix patch

$$
z_{c y c}=\frac{2 \pi}{c Z B}\left(\gamma \beta E^{\prime}+\gamma(\hat{\beta} \cdot \vec{p})\right)
$$

$$
\begin{aligned}
& \quad E=\gamma E^{\prime}+\gamma \beta(\widehat{\beta} \cdot \vec{p}) \\
& E=\frac{1}{\gamma} E^{\prime}+\frac{c Z B}{2 \pi} \beta z_{c y c} \\
& \text { different charged particle } \\
& \text { has different slope! }
\end{aligned}
$$

Simplicity of HELIOS

Large acceptance! \rightarrow Good statistics Good energy resolution (Silicon detectors) Relatively cheap! (for above cases)

Building of HELIOS

Decommissioned Magnetic Resonance Imaging (MRI) device

Magnetic field map

Position Sensitive Si detectors

- 4 sides, 6 detectors long
- Detector size, $9 \times 50 \mathrm{~mm}$
- 700- $\mu \mathrm{m}$ thick (e.g. $\sim 10 \mathrm{MeV}$ protons)
- Φ coverage, 0.48 of 2π
- $\Omega_{\text {detector }}=21 \mathrm{msr}$
- $\Omega_{\text {array }}=493 \mathrm{msr}$

Position $\approx(\mathrm{X} 1-\mathrm{X} 2) / \mathrm{E}$
J. C. Lighthall et al., Nucl. Instrum. Methods Phys. A 662, 97 (2010)

The first experiment - Structure of ${ }^{13} \mathrm{~B}$

${ }^{12} \mathrm{~B}(\mathrm{~d}, \mathrm{p})^{13} \mathrm{~B} @ 5.77 \mathrm{MeV} / \mathrm{u}, 10^{5} \mathrm{pps}$ B.B. Back et al., PRL 104, 132501 (2010)

Abnormally around ${ }^{13} \mathrm{~B} \quad J^{\pi}=\frac{1^{+}}{2}$

- Many previous study using (t,p), (α, t) lack of energy resolutions.
- (d, p) reaction is relatively clean

energy resolution : ~43 keV

Structure of ${ }^{14} \mathrm{~B}$

${ }^{13} \mathrm{~B}(\mathrm{~d}, \mathrm{p})^{14} \mathrm{~B}$ @ $15.7 \mathrm{MeV} / \mathrm{u}, \sim 3 \times 10^{4} \mathrm{pps}$
S. Bedoor et al., PRC 88, 011304 (2013)

- ${ }^{14} \mathrm{~B}$ is the last $\mathrm{N}=9$ isotone, $\mathrm{S}_{\mathrm{n}}=0.969 \mathrm{MeV}$
- Little knowledge about ${ }^{14} \mathrm{~B}$
- (d, p) reaction is one of the best tool.

Structure of ${ }^{16} \mathrm{C}$

${ }^{15} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{16} \mathrm{C} @ 8.2 \mathrm{MeV} / \mathrm{u}, 2 \times 10^{6} \mathrm{pps}$
A.H. Wuosmaa et al., PRL 105, 132501 (2010)

$$
\mathrm{N}=10
$$

Motivation:

- B(E2) values were much smaller from stable nuclei
- Lifetime measurement for $2_{1}{ }^{+}$ state report much larger B(E2).

Conclusion:

- The spectroscopic factors are consistent with shell model calculation.
- $0_{1}^{+}=\sqrt{0.3}\left(1 s_{\frac{1}{2}}\right)^{2}+\sqrt{0.7}\left(0 d_{\frac{5}{2}}\right)^{2}$

- ${ }^{16} \mathrm{C}$ is well described by WBP \rightarrow not very exotic nucleus.

State	$E_{\text {exp }}(\mathrm{MeV})$	$S_{\text {exp }}$	$S_{\text {WBP }}$
0_{1}^{+}	0.000	$0.60(.13)$	0.60
2_{1}^{+}	1.766	$0.52(.12)$	0.58
0_{2}^{+}	3.027	$1.40(.31)$	1.34
2_{2}^{+}	3.986	$\leq 0.34^{\mathrm{a}}$	0.33
3_{1}^{+}	4.088	$0.82-1.06^{\mathrm{a}}$	0.92

Structure of ${ }^{18} \mathrm{~N}$

${ }^{17} \mathrm{~N}(\mathrm{~d}, \mathrm{p})^{18} \mathrm{~N} @ 13.6 \mathrm{MeV} / \mathrm{u}, 2 \times 10^{4} \mathrm{pps}$, Purity $=25-75 \%$ C.R. Hnffman ot al PRC 88 nム4217 (2013)

I. Talmi and I. Unna, PRL 4, 469 (1960).

16 O	17 O	18 O	190	200	210	220
15 N	16 N	17 N	18 N	19 N	20 N	21 N
14 C	15 C	16 C	17 C	18 C	19 C	20 C

$N=11$

High spin state of ${ }^{19} \mathrm{~F}$

 ${ }^{18 \mathrm{mF}}(\mathrm{d}, \mathrm{p})^{19} \mathrm{~F} @ 14 \mathrm{MeV} / \mathrm{u}, \sim 5 \times 10^{5} \mathrm{pps},{ }^{18 \mathrm{mF}} \sim 36 \%$ D. Santiago-Gonzalez et al., PRL 120, 122503 (2018)

First experimental proof of DUAL description!!! single particle picture and collective picture

Structure of ${ }^{20} \mathrm{O}$

${ }^{19} \mathrm{O}(\mathrm{d}, \mathrm{p}){ }^{20} \mathrm{O} @ 6.61 \mathrm{MeV} / \mathrm{u}$
C.R. Hoffman et al., PRC 85, 054318 (2012)

There are only (t, p) or beta decay study. \rightarrow Hard to study the single particle states.

- Only need to use $0 d_{5 / 2}$ and $1 \mathrm{~s}_{1 / 2}$ to describe the result. Consistent with $N=14$ shell closure
- The USD Single particle energies are agreed with the result.

$\mathrm{N}=12$

		$\left\langle\left(d_{5 / 2}\right)^{2} J\right\| V\left\|\left(d_{5 / 2}\right)^{2} J\right\rangle$	
$E^{*}(\mathrm{MeV})$	J	${ }^{20} \mathrm{O}$	USDA
0.00	0		
4.46	0	$-2.74[-2.30]$	-2.48
1.67	2	$-1.37[-0.08]$	-0.99
3.57	4	$0.53[0.91]$	-0.21

Structure of ${ }^{22} \mathrm{~F}$

${ }^{21} \mathrm{~F}(\mathrm{~d}, \mathrm{p})^{22} \mathrm{~F} @ 10 \mathrm{MeV} / \mathrm{u}, ~ \sim 3 \times 10^{4} \mathrm{pps}$
J. Chen et al., PRC 98, 014325 (2018)

20 Ne	21 Ne	22 Ne	23 Ne	24 Ne	25 Ne
19 F	20 F	21 F	22 F	23 F	24 F
180	190	20 O	210	22 O	230
$\mathrm{~N}=13$					

- There are many doubly magic oxygen
- Study the TBMEs between $\pi 0 d_{5 / 2}$ to sd-shell neutrons

Argonne $\underset{\text { wn }}{1}$
NATIONAL LABORATORY

Structure of ${ }^{137} \mathrm{Xe}$

${ }^{136} \mathrm{Xe}(\mathrm{d}, \mathrm{p})^{137} \mathrm{Xe} @ 10 \mathrm{MeV} / \mathrm{u}$

B.P. Kay et al., PRC 84, 024325 (2011)

- Testing capability to do heavy ion reaction

$\mathrm{N}=83$
- Determine the energy centroid of $\mathrm{h}_{9 / 2}$ and $\mathrm{i}_{13 / 2}$

$$
l=5 \quad l=6
$$

Structure of ${ }^{86} \mathrm{Kr}$

${ }^{86} \mathrm{Kr}(\mathrm{d}, \mathrm{p})^{87} \mathrm{Kr} @ 10 \mathrm{MeV} / \mathrm{u}, 5 \times 10^{7} \mathrm{pps}$
D.K. Sharp et al., PRC 87, 014312 (2013)

$N=51$

Structure of ${ }^{12,13} \mathrm{~B}$

$$
\begin{aligned}
& { }^{14} \mathrm{C}(\mathrm{~d}, \alpha)^{12} \mathrm{~B} @ 17.1 \mathrm{MeV} / \mathrm{u}, 10^{7-8} \mathrm{pps} \\
& { }^{15} \mathrm{C}(\mathrm{~d}, \alpha)^{13} \mathrm{~B} @ 15.7 \mathrm{MeV} / \mathrm{u}, 5 \times 10^{5} \mathrm{pp}
\end{aligned}
$$

A. H. Wuosmaa et al., PRC 90, 061301 (2014)

- (d, α) reaction is highly selective,
- the neutron + proton has to be aligned.
- Populate inaccessible states $(\mathrm{T}=0$) by single-particle transfer

A decade of discoveries

Up to 2. 7 T

Future of HELIOS
 - ISOLDE Solenoidal Spectrometer

144.480102

HIGH INTENSITY AND ENERGY UPGRADE

Argonne \triangle

- The island of inversion
- Deformation

- First study on $\mathrm{N}>126$
- r-process

Summary

- HELIOS is a large acceptance, small energy resolution spectrometer.
- The measurement and data analysis is relatively simple and easy.
- It made a lot discoveries in the past decade.(will be more!!)

