Meeting report (May 26th)


  1. Thermal Polarization measurement ( BG measurement ) ( x187 set data )
  2. Optimization of the small system
    1. Crystal orientation
    2. Microwave power (3.0 ~ 3.5W)
    3. Time sequences of laser, microwave and field sweep
    4. Laser duty (5%, 10%, 20%, 20%)
  3. 13C polarization transfer.
    1. Double tuning (making coil and tuners) ( circuit diagram and theory needed to be explained)
    2. Circuit changing
      1. NMR tower ( switch to 3.2 MHz for Larmor frequency of 13C )
      2. The proton spin lock and polarization transfer will be done by other circuit


  1. The thermal polarization cannot be distinguished with the background
  2. From the result of 13C polarization transfer, the microwave and the laser may be not at optimization condition.
    1. The trigger (or the on/off) signal may be inverted
  3. The polarization transfer has negative result due to low proton polarization.


  1. Test on the microwave trigger signal (at the end of this week)
  2. Optimization at right condition (at the end of next week, June 3rd)
    1. The ESR frequency should be matched by fine tuning of magnetic field
  3. Spin echo for thermal polarization
  4. Laser linear polarization dependency
  5. 13C polarization transfer


  1. The submission on JSP meeting at Sept.
    1. Title = “ Progress report on proton polarization at room temperature “
  2. The PSTP meeting at Russian
    1. Due to The time conflict, may only participate for from 12th to 14th. Then I have to go back to Japan for joining the JSP meeting on 16th.
  3. Establish a communication perform
    1. A network based –wiki
    2. Whiteboard at the lab
    3. To understand each member status and progress
    4. Ask Kawase San.