2p-2p decay of 8C and isospin-allowed 2p decay of the isobaric-analog state in 8B

Leave a comment

DOI: 10.1103/PhysRevC.82.041304

this paper reports another 2 protons decay mode in 8C. They also discover an “enhancement” at small relative energy of 2 protons. They also reported that an isobaric analog state, 8C and 8B, have same 2-protons decay, which is not known before.

the 1st paragraph is a background and introduction. 2 protons decay is rare. lightest nucleus is 6Be and heaviest and well-studied is 45Fe. the decay time constant can be vary over 18 orders and the decay can be well treated by 3-body theory.

the 2nd paragraph describes the decay channel of 8C and 8B. it uses the Q-value to explain why the 2-protons decay is possible. it is because the 1-proton decay has negative binding energy, thus, it require external energy to make it decay. while 2-protons decay has positive binding energy, thus, the decay will automatic happen in order to bring the nucleus into lower energy state. it also consider the isospin, since the particle decay is govt by strong nuclear force, thus the isospin must be conserved. and this forbid of 1-proton decay.

it explains further on the concept of 2-protons decay and 2 1-protons decay. it argues that, in the 8C, the 2-protons decay is very short time, that is reflected on the large energy width, make the concept of 2 1-protons decay is a unmeasurable concept. however, for the 8Be, the life time is 7 zs (zepto-second 10^{-21} ), the 8Be moved 100 fm ( femto-meter $latex 10^{-15} ), and this length can be detected and separate the 4-protons emission in to 2 2-protons decay.

the 3rd paragraph explain the experiment apparatus – detector.

the 4th paragraph explains the excitation energy spectrum for 8C, 6Be.

the 5th and 6th paragraphs explain the excitation energy spectrum for the 6Be form 8C decay. since the 2 steps 2 – protons decay has 4 protons. the identification for the correct pair of the decay is important. they compare the energy spectrum for 8C , 6Be and 6Be from decay to do so.

the 7th paragraph tells that they anaylsis the system of 2-protons and the remaining daughter particle, by moving to center of mass frame ( actually is center of momentum frame ) and using Jacobi T coordinate system, to simplify the analysis. the Jacobi T coordinate is nothing but treating the 2-protons the 2 protons are on the arm of the T, and the daughter particle is on the foot of the T.

Changing of frame II

Leave a comment

Few things have to say in advance.

  1. A Vector is NOT its coordinate
  2. A vector can only be coordinated when there is a frame.
  3. A frame is a set of “reference” vectors, which span the whole space. Those reference vectors are called basis of a frame.
  4. a transformation is on a vector or its coordinate. And it can be represented by a matrix.
  5. A Matrix should act on a coordinate or basis, but not a vector.

where

\hat{\alpha} = \begin {pmatrix} \hat{\alpha_1} \\ . \\ \hat{\alpha_n} \end{pmatrix} is the column vector of  basis reference vector.

\vec{u_{\alpha}} is the coordinate column vector in \alpha basis.

\vec{U} is the vector in space

\vec{V} is the transformed vector in space.

G and H are the matrix of transform.

G \cdot H \cdot G^{-1} has the same meaning of H , only the matrix representation of the transform is different due to different basis.

the Euler’s rotation can be illustrated by series of the diagram. each rotation of frame can be made by each G . but when doing real calculation, after we apply the matrix G  on the coordinate, the basis changed. when we using the fact that  a matrix can be regard as a frame transform or vector transform. we have follow:

This diagram can extend to any series of frame rotation. and the V_s \rightarrow X_s \rightarrow V_2 \rightarrow V_s triangle just demonstrate how 2 steps frame transform can be reduced to the vector transform in same frame.

i finally feel that i understand Euler angle and changing of frame fully. :D

HERE is a note on vector transform and frame transform.